Exploration of glassy state in Prussian blue analogues

01 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Prussian blue analogues (PBAs), a class of microporous crystalline coordination frameworks, are long known for their diverse properties in porosity, magnetic, charge transport, catalysis, optics, and more. Versatile structural composition and the ability to control defect ordering through synthetic conditions offer opportunities to manipulate the functionality in the crystalline state. However, developments in Prussian blue analogues (PBAs) have primarily revolved around the ordered crystalline state, and the glassy state of PBAs has not yet been explored. Here we report the discovery of a disordered glassy state of the PBA via mechanically induced crystal–glass transformation. We found the preservation of metal–ligand–metal connectivity, confirming the short-range order and semiconductor behaviour, exhibiting an electronic conductivity value of 0.31 mS cm−1 at 50 ˚C. Mechanical-induced glass transformation also triggers changes in electronic states, where electroneutrality is compensated by introducing unconventional CN− vacancies. Partial disorders and ligand vacancies in recrystallized PBA give rise to an enhanced porosity, inaccessible in the crystalline parent. The present work also established a correlation between the mechanical stress required to initiate crystal–glass transformation and intrinsic mechanical properties, which are controlled by the vacancy/defect content, the presence of interstitial water, and the overall composition of PBAs.

Keywords

Prussian blue
Coordination polymers
Metal-organic frameworks
Glasses

Supplementary materials

Title
Description
Actions
Title
ESI
Description
ESI
Actions
Title
Graphical abstract
Description
Graphical abstract
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.