Effect of Photolysis on Zirconium Amino Phenoxides for the Hydrophosphination of Alkenes: Improving Catalysis

01 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A comparative study of amino phenoxide zirconium catalysts in the hydrophosphination of alkenes with diphenylphosphine reveals enhanced activity upon irradiation. The origin of improved reactivity is hypothesized to result from substrate insertion upon an n to d charge transfer of a Zr–P bond in the excited state of putative phosphido (Zr–PR2) intermediates. TD-DFT analysis reveals the lowest lying excited state in the proposed active catalysts are dominated by a P 3p to Zr 4d MLCT, presumably leading to enhanced catalysis. This hypothesis follows from triamidoamine-supported zirconium catalysts but demonstrates the generality of photocatalytic hydrophosphination with d0 metals.

Keywords

hydrophosphination
phosphine
photocatalysis
zirconium
charge transfer

Supplementary materials

Title
Description
Actions
Title
supporting information
Description
computational details and spectra
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.