Transferability of data-driven, many-body models for CO2 simulations in the vapor and liquid phases

29 November 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Extending on previous work by Riera et al. [J. Chem. Theory Comput. 16, 2246 (2020)], we introduce a second generation family of data-driven many-body MB-nrg models for CO2 and systematically assess how the strength and anisotropy of the CO2-CO2 interactions affect the models' ability to predict vapor, liquid, and vapor-liquid equilibrium properties. Building upon the many-body expansion formalism, we construct a series of MB-nrg models by fitting 1-body and 2-body reference energies calculated at the coupled cluster level of theory for large monomer and dimer training sets. Advancing from the first generation models, we employ the Charge Model 5 scheme to determine the atomic charges and systematically scale the 2-body energies to obtain more accurate descriptions of vapor, liquid, and vapor-liquid equilibrium properties. Comparisons with the polarizable TTM-nrg model, which is constructed from the same training sets as the MB-nrg models but using a simpler representation of short-range interactions based on conventional Born-Mayer functions, showcase the necessity of high dimensional functional forms for an accurate description of the multidimensional energy landscape of liquid CO2. These findings emphasize the key role played by the training set quality and flexibility of the fitting functions in the development of transferable, data-driven models which, accurately representing high-dimensional many-body effects, can enable predictive computer simulations of molecular fluids across the entire phase diagram.


many-body interactions
phase behavior
thermophysical properties
data-driven models

Supplementary materials

Supplementary Material for: Transferability of data-driven, many-body models for CO2 simulations in the vapor and liquid phases
Supplementary tables and figures.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.