Super-resolved 3D mapping of molecular orientation with vibrational techniques

29 November 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

When a sample has an anisotropic structure, it is possible to obtain different information, when changing polarization of incident light. Using polarized light of a single vibrational band to determine the in-plane orientation and internal ordering of a sample is a typical practice in materials science. Acquiring mapping data at four different polarizations with a stationary sample than just at two polarizations offers much more insight into the sample structure with proper mathematical treatment. A concurrent analysis of two vibrational bands with perpendicular transition moment orientations allows the understanding of the orientational ordering in three dimensions. We show here, to the best of our knowledge, the first application of concurrent analysis to IR spectromicroscopy data and obtain orientation angles of a model spherulite polycaprolactone sample. Moreover, we show that this method can be easily applied to high resolution, diffraction limited FT-IR and Raman imaging and even to sub-diffraction limit O-PTIR imaging. Due to the non-tomographic experimental approach, no image distortion is visible and nanometer scale orientation domains can be observed. 3D bond orientation maps will enable in-depth characterization of sample structure in a quantitative manner enabling more precise control of their physicochemical properties and function.

Keywords

3D molecular orientation
Linear Polarization
FT-IR Imaging
O-PTIR
Raman
Polycaprolactone
Spherulite

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.