Abstract
High harmonic spectra for H2 are simulated by solving the time-dependent Kohn-Sham equation in the presence of a strong laser field, using an atom-centered Gaussian representation of the orbitals and a complex absorbing potential to mitigate artifacts associated with the finite extent of the basis functions, such as spurious reflection of the outgoing electronic wave packet. Interference between the outgoing and reflected waves manifests
in the Fourier transform of the time-dependent dipole moment function and leads to peak broadening in the high harmonic spectrum as well as the appearance of spurious peaks at energies well above the cutoff energy
at which the harmonic progression is expected terminate.
We demonstrate that well-resolved spectra can be obtained through the use of an atom-centered absorbing potential. As compared to grid-based algorithms for solving the time-dependent Kohn-Sham equations, the present approach is more readily extendible to larger polyatomic molecules.