Highly Stable Low Redox Potential Quinone for Aqueous Flow Batteries

25 November 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Aqueous organic redox flow batteries are promising candidates for large-scale energy storage. However, the design of stable and inexpensive electrolytes is challenging. Here, we report a highly stable, low redox potential, and potentially inexpensive negolyte species, sodium 3,3',3'',3'''-((9,10-anthraquinone-2,6-diyl)bis(azanetriyl))tetrakis(propane-1-sulfonate) (2,6-N-TSAQ), which is synthesized in a single step from inexpensive precursors. Pairing 2,6-N-TSAQ with potassium ferrocyanide at pH 14 yielded a battery with the highest open-circuit voltage, 1.14 V, of any anthraquinone-based cell with a capacity fade rate <10%/yr. When 2,6-N-TSAQ was cycled at neutral pH, it exhibited two orders of magnitude higher capacity fade rate. The great difference in anthraquinone cycling stability at different pH is interpreted in terms of the thermodynamics of the anthrone formation reaction. This work shows the great potential of organic synthetic chemistry for the development of viable flow battery electrolytes and demonstrates the remarkable performance improvements achievable with an understanding of decomposition mechanisms.


flow battery
organic redox


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.