Tunable aziridinium ylide reactivity: non-covalent interactions enable divergent product outcomes

26 November 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Methods for rapid preparation of densely functionalized and stereochemically complex N-heterocyclic scaffolds are in demand for exploring potential new bioactive chemical space. This work describes experimental and computational studies to better understand the features of aziridinium ylides as intermediates for the synthesis of highly substituted dehydromorpholines. The development of this chemistry has enabled the extension of aziridinium ylide chemistry to the concomitant formation of both a C–N and a C–O bond in a manner that preserves the stereochemical information embedded in the substrate. The chemistry is tolerant of a wide range of functionalities that can be employed for DNA-encoded library (DEL) synthesis to prepare diverse libraries of heterocycles with potential bioactivity. In addition, we have uncovered several key insights that describe the importance of steric effects, rotational barriers around the C–N bond of the aziridinium ylide, and non-covalent interactions (NCIs) on the ultimate reaction outcome. These critical insights will assist in the further development of this chemistry to generate novel and complex N-heterocycles that will further expand complex amine chemical space.

Keywords

aziridine
aziridinium ylide
carbene
morpholine
tunability
non-covalent interactions

Supplementary materials

Title
Description
Actions
Title
SI for Tunable aziridinium ylide reactivity: non-covalent interactions enable divergent product outcomes
Description
Experimental procedures and spectroscopic data for all new compounds.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.