Alcohol Assisted Solution-Combustion Technique for the Synthesis of Phase-Pure BaSnO3 Nanoparticles at 130 °C

06 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Lowering the synthesis temperature to obtain phase pure BaSnO3, which is the host material for high figure-of-merit (FOM) perovskite transparent conductors (TCs), can expand the horizons for its optoelectronic applications, with an obvious reduction in the thermal budget. In this work, we have developed a novel solution combustion technique for the synthesis of BaSnO3 nanoparticles. A peroxo/superoxo precursor to the nanoparticles is first synthesized by co-precipitation of the tin and barium salts via the H2O2 assisted or the `CSMC' route. The phase evolution, under different drying conditions of the wet precursor to crystalline BaSnO3 nanoparticles is then studied. We find that the crystallization temperature of BaSnO3 is significantly reduced by adding an organic solvent such as ethanol or propanol to the precursor; temperatures as low as 130 °C yield phase pure BaSnO3 nanoparticles. We establish that the organic solvent increases the reactive O2 ligand content, which plays a pivotal role in the synthesis. Due to this, an exothermic reaction occurs around 130 °C, thereby providing the heat of reaction for conversion of the precursor to phase-pure BaSnO3. Importantly, this method should also allow for the facile incorporation of dopants, paving the way for synthesis of high FOM TCs at low temperatures. Such low synthesis temperatures enable BaSnO3 to be used in devices having temperature limitations during device processing, such as heterojunction Si solar cells or perovskite-based solar cells in an n-i-p architecture.

Keywords

solution combustion
Barium stannate
low-temperature
nanoparticles

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.