Hydrogenation of CO/CO2 mixtures under unsteady-state conditions: Effect of the carbon oxides on the dynamic methanation process

23 November 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The Power-to-Gas (PtG) process offers the opportunity to store fluctuating renewable energy in form of chemical energy by hydrogenating carbon oxides into methane. In addition, potential carbon point sources often consist of CO/CO2 (COx) mixtures. Hence, reactor design requires kinetic models valid for unsteady-state operation and a broad spectrum of feed gas compositions. In order to provide the required experimental data basis for derivation of kinetic expressions valid under transient conditions, the dynamic response of a continuously operated fixed-bed methanation reactor is studied by applying periodic step-changes in the feed composition. The obtained results are evaluated based on a simple reactor model, providing the molar flow rate exchanged between the gas bulk and the solid surface for CO, CO2, CH4, and H2O. The results further reveal that the transient kinetic processes at the catalyst surface strongly affect the reactor response under reaction conditions of technical relevance.

Keywords

Experimental Investigation
Transient behavior
Step response experiments
Simulation based data evaluation
co-methanation
Periodic operation

Supplementary materials

Title
Description
Actions
Title
Supporting information for the main manuscript
Description
Contains additional results not presented in the main manuscript, but being relevant for the overall discussion.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.