Quantification of geometric errors made simple: application to main-group molecular structures

16 November 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Nearly all electronic structure simulations begin with obtaining approximate geometries, making a systematic quantification of errors in approximate molecular structures of key importance. Recently, the geometric energy offset (GEO) framework based on a single and natural measure for quantifying and analysing these errors has been proposed [J. Phys. Chem. Lett. 2020, 11, 99579964]. An accurate and way less costly approximation to GEO is utilized here to readily quantify errors in main-group structures and analyze them in a chemically intuitive way. The use of semiexperimental geometries as a reference further simplifies the analysis. The analysis reveals new insights into the geometric performance of methods, new rankings, as well as patterns across different classes of methods and basis sets that arise from the analysis.

Keywords

geometry optimization
DFT

Supplementary materials

Title
Description
Actions
Title
Supporting Information for: "Quantification of geometric errors made simple: application to main-group molecular structures"
Description
Additional results and figures supporting conclusions of the paper
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.