Solvent-structured PEDOT:PSS surfaces: fabrication strategies and nanoscale properties

15 November 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


We present the preparation of nanostructured conducting PEDOT:PSS thin films by solvent vapor annealing (SVA), using the low boiling point solvent tetrahydrofuran (THF). An Atomic Force Microscopy (AFM) study allowed the observation of distinct nanostructure development as a function of solvent exposure time. Moreover, the nanostructures’ physical properties were evaluated by nanomechanical, nanoelectrical, and nano-FTIR measurements. In this way, we were able to differentiate the local response of the developed phases and to identify their chemical nature. The combination of these techniques allowed to demonstrate that exposure to THF is a facile method to effectively and selectively modify the surface nanostructure of PEDOT:PSS, and thereafter its final properties. Moreover, our nanoscale studies provided evidence about the molecular rearrangements that PEDOT:PSS suffers during nanostructure fabrication, a fundamental fact in order to expand the potential applications of this polymer in thermoelectric and optoelectronic devices.


Conducting polymer
Polymer nanostructures
Atomic Force Microscopy
Nanoscale properties
Polymer surfaces
Phase separation


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.