Substrate multiplexed protein engineering facilitates promiscuous biocatalytic synthesis

12 November 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Enzymes with high activity are readily produced through protein engineering, but intentionally and efficiently engineering enzymes for an expanded scope is a contemporary challenge. Measuring reaction outcomes on mixtures of substrates, called here SUbstrate Multiplexed Screening (SUMS), has long been used to rigorously quantitate enzyme specificity. Despite the potential utility of SUMS to guide engineering of promiscuous enzymes, this approach has not found widespread adoption in biocatalysis. Here, we develop principles of how to design robust SUMS methods that, rather than assess absolute specificity, use heuristic readouts of substrate promiscuity to identify hits for further investigation. This rich information enables engineering of activity for multiple substrates simultaneously and identifies enzyme variants with altered promiscuity, even when overall activity is lower. We demonstrate the effectiveness of SUMS by engineering two enzymes to produce pharmacologically active tryptamines from simple indole precursors in a biocatalytic cascade. These advances leverage common laboratory equipment and represent a highly accessible and customizable method for enzyme engineering.


Protein Engineering
Pyridoxal Phosphate
X-ray crystallography
Organic synthesis

Supplementary materials

Supporting Information
An instructional Supplemental Discussion on how to design and interpret multiplexed assays begins on page S34.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.