Deconvoluting the Impacts of the Active Material Skeleton and the Inactive Phase Morphology on the Performance of Lithium Ion Battery Electrodes

12 November 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


In order to extract the most capacity out of Li-ion battery (LIB) active materials, the optimization of the electrodes architectures at the mesoscale is essential. This work focuses on the morphology of the inactive phase (carbon additives and binder) through a 3-D modeling approach based on stochastic generation with realistic LiNi1/3Mn1/3Co1/3O2 particle size distributions. It was found that having the inactive phase as a film spread on the active material results in poorer performance in part due to the loss of active surface area when compared to an agglomerates morphology.


carbon binder domain
3D modeling


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.