Abstract
High-throughput methods in science have created a trend to generate massive amount of data that challenge our ability to mine and search through massive information spaces. Thus more efficient and effective solutions for data analysis and optimization are required continuously. The best solutions for many problems-solving approaches in science could have many sources of inspiration coming from diverse natural phenomena. In this context, most Artificial Intelligence (AI) approaches benefit from emulation natural processes for their information processing strategy. Among the AI protocols, meta-heuristic algorithms for learning model and optimization have exploited a number of biological phenomena leading to highly effective search and learning engines. Examples of these processes are the ant colony organization, brain function and genetics among others. The evolution has turned all these biological events in highly efficient procedures, whose basics principles have then provided an excellent ground of new computational algorithms The aim of this report is pave the way to a new class of nature-based meta-heuristic methods which shall be based on diverse chemical and biomolecular systems. We present five examples from different subjects of Chemistry like Organic Chemistry, Chemical Physics and Biomolecules; and introduce how computational models could be inferred from them. Besides, we develop one of these models, in detail, which is based on protein evolution and folding principles. We consider that the wealth of systems and processes related to Chemistry, as those described in the present communication, might boost the development of relevant meta-heuristic and classification algorithms in upcoming years.