Sustainable Production of Reduced Phosphorus Compounds: Mechanochemical Hydride Phosphorylation Using Condensed Phosphates as a Route to Phosphite

09 November 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Phosphorus removal and recovery technologies have been implemented to tackle the anthropogenic eutrophication caused by phosphate runoff into waterways. In pursuit of a better utilization of the phosphates recovered from waste water treatment, we herein report that condensed phosphates can be employed to phosphorylate hydride reagents under solvent-free mechanochemical conditions to furnish phosphite (HPO3)2−, a versatile chemical with phosphorus in the +3 oxidation state. Hydride phosphorylation, as a two-electron one-proton reduction of a main group element oxide, constitutes a direct parallel with CO2 reduction to formate. Using potassium hydride as the hydride source, sodium trimetaphosphate (Na3P3O9 ), triphosphate (Na5P3O10), and pyrophosphate (Na4P2O7) engendered phosphite in 44, 58, and 44% yields based on total P content, respectively, under their optimal conditions. Formation of overreduced products including hypophosphite (H2PO2−) was identified as a competing process, and mechanistic investigation revealed that hydride attack on in situ generated phosphorylated phosphite species is a potent pathway for overreduction. The phosphite generated from our method could be easily isolated in the form of barium phosphite, a useful intermediate for production of phosphorous acid. This method circumvents the need to pass through white phosphorus (P4) as a high energy intermediate and mitigates involvement of environmentally hazardous chemicals. A bioproduced polyphosphate from baker’s yeast was demonstrated to be a viable starting material for the production of phosphite. This example demonstrates the possibility of accessing reduced phosphorus compounds in a more sustainable manner, and more importantly, closing the modern phosphorus cycle.

Keywords

phosphorus
phosphite
EBRP
condensed phosphates
phosphorylation
phosphorus recovery and recycling
phosphorus sustainability
green chemistry

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Description of synthetic procedures and characterization data.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.