Electrochemical Synthesis of Allylic Amines from Alkenes and Amines

09 November 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Allylic amines are valuable synthetic targets en route to diverse biologically active amine products. Current allylic C–H amination strate-gies remain limited with respect to the viable N-substituents. Herein we disclose a new electrochemical process to prepare aliphatic allylic amines by coupling two abundant starting materials: secondary amines and unactivated alkenes. This oxidative transformation proceeds via electrochemical generation of an electrophilic adduct between thianthrene and the alkene substrates. Treatment of these adducts with aliphatic amine nucleophiles and base provides allylic amine products in high yield. This synthetic strategy is also amenable to functionali-zation of feedstock gaseous alkenes at 1 atmosphere. In the case of 1-butene, remarkable Z-selective crotylation is observed. This strategy, however, is not limited to the synthesis of simple building blocks; complex biologically active molecules are suitable as both alkene and amine coupling partners. Preliminary mechanistic studies implicate vinylthianthrenium salts as key reactive intermediates.

Keywords

electrochemistry
amines
C–N bond formation
allylic amination
thianthrene

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.