Stereoselective Palladium-Catalyzed C(sp3)–H Mono-Arylation of Piperidines and Tetrahydropyrans with a C(4) Directing Group

08 November 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A selective Pd-catalyzed C(3)–H cis-functionalization of piperidine and tetrahydropyran carboxylic acids is achieved using a C(4) aminoquinoline amide auxiliary. High mono- and cis-selectivity is attained by using mesityl carboxylic acid as an additive. Conditions are developed with significantly lower reaction temperatures (≤50 °C) than other reported heterocycle C(sp3)–H functionalization reactions, which is facilitated by a DoE optimization. A one-pot C–H functionalization-epimerization procedure provides the trans-3,4-disubstituted isomers directly. Divergent aminoquinoline removal is accomplished with the installation of carboxylic acid, alcohol, amide and nitrile functional groups. Overall fragment compounds suitable for screening are generated in 3–4 steps from readily-available heterocyclic carboxylic acids.

Keywords

Heterocycles
Palladium Catalysis
C–H Functionalization
Piperidine
Tetrahydrofuran
Stereoselective
Arylation

Supplementary materials

Title
Description
Actions
Title
Supporting Information for Stereoselective Palladium-Catalyzed C(sp3)–H Mono-Arylation of Piperidines and Tetrahydropyrans with a C(4) Directing Group
Description
Supporting information; expanded optimization details; DOE Studies; experimental and characterisation data.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.