Organic Chemistry

Asymmetric Addition of Allylsilanes to Aldehydes – A Cr/Photoredox Dual Catalytic Approach Complementing the Hosomi–Sakurai Reaction

Authors

Abstract

The allylation of aldehydes is a fundamental transformation in synthetic organic chemistry. Among the multitude of available reagents, especially allylsilanes have been established as preferred allyl source. As initially reported by Hosomi & Sakurai, these non-toxic and highly stable reagents add to carbonyls via an open transition state upon Lewis acid activation. Herein, we report a general strategy to access a variety of valuable homoallylic alcohols in opposite chemo- and diastereoselectivity to the established Hosomi–Sakurai conditions by switching to photocatalytic activation in combination with a closed transition state (Chromium catalysis). Moreover, this dual catalytic approach displays a straightforward way to introduce excellent levels of enantioselectivity and its mild conditions allow for a broad substrate scope including chiral boron-substituted products as a highlight. To emphasize the synthetic utility, our method was applied as the key step in the synthesis of a bioactive compound and in the late-stage functionalization of steroid derivatives. Detailed mechanistic studies and DFT calculations hint towards an unprecedented photo-initiated chain being operative.

Content

Thumbnail image of Manuscript_submission-1.pdf