Mixed Halide Bulk Perovskite Triplet Sensitizers: Interplay between Band Alignment, Mid-gap Traps and Phonons

05 November 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Photon upconversion, particularly via triplet-triplet annihilation (TTA), could prove beneficial in expanding the efficiencies and overall impacts of optoelectronic devices across a multitude of technologies. The recent development of bulk metal halide perovskites as triplet sensitizers is one potential step toward the industrialization of upconversion-enabled devices. Here, we investigate the impact of varying additions of bromide into a lead iodide perovskite thin film on the TTA upconversion process in the annihilator molecule rubrene. We find an interplay between the bromide content and the overall device efficiency. In particular, a higher bromide content results in higher internal upconversion efficiencies, enabled by more efficient charge extraction at the interface, likely due to a more favorable band alignment. However, the external upconversion efficiency decreases, as the absorption cross section in the near infrared is reduced. The highest upconversion performance is found in our study for a bromide content of 5%. This result can be traced back to a high absorption cross section in the near infrared and higher photoluminescence quantum yield in comparison to the iodide-only perovskite, as well as an increased driving force for charge transfer.

Keywords

upconversion
triplet-triplet annihilation
perovskite
mixed halide
trap state

Supplementary materials

Title
Description
Actions
Title
Supplementary Material
Description
Additional data and information.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.