Bandgaps of Atomically Precise Graphene Nanoribbons and Occam’s Razor

02 November 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Rationalization of energy gaps of atomically precise AGNRs, “bulk” (ΔΕac) or “zigzag-end” (ΔΕzz), could be challenging and controversial concerning their magnitude, origin, substrate influence (ΔΕsb), and spin-polarization, among others. Hereby, a simple self-consistent and “economical” interpretation is presented, based on “appropriate” DFT (and TDDFT) calculations, general symmetry principles, and plausibility arguments, which is fully consistent with current experimental measurements for 5-, 7-, and 9-AGNRs within less than 1%, although at variance with some prevailing views or interpretations for ΔΕac, ΔΕzz, and ΔΕsb. Thus, an excellent agreement between experiment and theory emerges, provided some established stereotypes are reconsidered and/or abandoned. The primary source of discrepancies is the finite length of AGNRs together with inversion-symmetry conflict and topological end/edge states, which invariably mix with other “bulk” states making their unambiguous detection/distinction difficult. This can be further tested by eliminating end-states (and ΔΕzz), by eliminating empty (non-aromatic) end-rings

Keywords

Atomically precise graphene nanoribbons
Armchair graphene nanoribbons
Energy gaps
topological end/edge states
DFT

Supplementary materials

Title
Description
Actions
Title
supplementary information
Description
additional plots and properties
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.