On-chip Direct Laser Writing of PAN-based Carbon Supercapacitor Electrodes

02 November 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We report carbonization of polyacrylonitrile by direct laser writing to produce microsupercapacitors directly on-chip. We demonstrate the process by producing interdigitated carbon finger electrodes directly on a printed circuit board, which we then employ to characterize our supercapacitor electrodes. By varying the laser power, we are able to tune the process from carbonization to material ablation. This allows to not only convert pristine polyacrylonitrile films into carbon electrodes, but also to pattern and cut away non-carbonized material to produce completely freestanding carbon electrodes. While the carbon electrodes adhere well to the printed circuit board, non-carbonized polyacrylonitrile is peeled off the substrate. We achieve specific capacities as high as 260 µF/cm2 in a supercapacitor with 16 fingers.

Keywords

polyacrylonitrile
carbonization
microcapacitor
laser-pyrolysis
laser-induced carbonization

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supplementary Figures
Actions
Title
Supporting Video
Description
Video of non-carbonized PAN film
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.