Pt(II)-Coordinated Tricomponent Self-Assemblies of Tetrapyridyl Porphyrin and Dicarboxylate Ligands: Are They 3D Prisms or 2D Bow Ties?

01 November 2021, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Thermodynamically favored heteroleptic coordination of Pt(II) ions with one aza- and another oxo-coordinating ligand yield tricomponent supramolecular coordination complexes (SCCs), which possess much greater structural complexity and functional diversity than traditional bicomponent SCCs containing only one of the ligands. Through X-ray crystallography, 1H, 31P, and 2D NMR spectroscopies, mass spectrometry, and computational studies, herein, we demonstrated that heteroleptic coordination of tetrapyridyl porphyrins (MTPP, M = Zn or H2) and various dicarboxylate ligands (XDC) having different lengths and rigidity with cis-(Et3P)2PtII corners yielded bow-tie (⋈)-shaped tricomponent [{cis-(Et3P)2Pt}4(MTPP)(XDC)2]4+ complexes featuring a MTPP core and two parallel XDC linkers held together by four heteroligated PtII(N,O) corners and ruled out the MTPP-based tetragonal prism formation. Irrespective of the rigidity and length of the XDC linkers within a certain range (~7–11 Å), they intramolecularly bridged two adjacent pyridyl tips of an MTPP ligand via PtII(N,O) corners, which led to the formation of bow-tie complexes instead of prisms. This happened because the angles of projection between the adjacent pyridyl rings of MTPP cores adapted to accommodate the bridging XDC linkers having different lengths, and the bow-tie formation was entropically favored over tetragonal prisms. This work not only unveiled novel bow-tie-shaped coordination complexes, but also accurately defined the actual structures and compositions of MTPP-based tricomponent SCCs. Furthermore, a representative bow-tie complex containing an electron-rich ZnTPP core selectively formed a charge-transfer (CT) complex with highly electron deficient 1,4,5,8,9,12-hexaazatriphenylene-2,3,6,7,10,11-heaxacarbonitrile (HATHCN) but not with π-donors like pyrene.

Keywords

Bow tie complex, tetrapyridyl porphyrin, tricomponent self-assembly, heteroleptic coordination

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Experimental details, additional supporting data.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.