Abstract
Excited state lifetimes of neutral titanium oxide clusters (TinO2n-x, n < 10, x < 4) were measured using a sequence of 400 nm pump and 800 nm probe femtosecond laser pulses. Despite large differences in electronic properties between the closed shell stoichiometric TinO2n clusters and the suboxide TinO2n-x (x = 1-3) clusters, the transient responses for all clusters contain a fast response of 35 fs followed by a sub-picosecond excited state lifetime. In this non-scalable size regime, subtle changes in the sub-ps lifetimes are attributed to variations in the coordination of Ti atoms and localization of charge carriers following UV photoexcitation. In general, clusters exhibit longer lifetimes with increased size and also with addition of O atoms. This suggests that removal of O atoms develops stronger Ti-Ti interactions as the system transitions from a semiconducting character into a fast metallic electronic relaxation mechanism.
Supplementary materials
Title
Transient Data for TinO2n-2 (n < 10) and TinO2n-3 (n < 10)
Description
Figures S1 and S2: Transient Data for TinO2n-2 (n < 10) and TinO2n-3 (n < 10)
Actions