Precise manipulation of electron transfers in clustered five redox sites

28 October 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Electron transfers in multinuclear metal complexes are the origin of their unique functionalities both in natural and artificial systems. However, electron transfers in multinuclear metal complexes are generally complicated, and predicting and controlling these electron transfers is extremely difficult. Herein, we report the precise manipulation of the electron transfers in multinuclear metal complexes. The development of a rational synthetic strategy afforded a series of pentanuclear metal complexes composed of metal ions and 3,5-bis(2-pyridyl)pyrazole (Hbpp) as a platform to probe the phenomena. Electrochemical and spectroscopic investigations clarified the overall picture of the electron transfers in the pentanuclear complexes. In addition, unique electron transfer behaviours, in which the reduction of a metal centre occurs during the oxidation of the overall complex (reduction-upon-oxidation process), were discovered. We also elucidated the two dominant factors that determine the manner of the electron transfers. Our results provide comprehensive guidelines for interpreting the complicated electron transfers in multinuclear metal complexes.

Keywords

multinuclear metal complex
electron transfer

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Supplementary Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.