Abstract
Mixed-metal oxides are generally considered to be the highest-performance catalysts for alkaline water oxidation. Despite significant efforts dedicated to understanding and accelerating their efficiency, most works have been limited investigations of Ni, Co, and Fe oxides, thus overlooking beneficial effects of hetero-anion incorporation. To this end, we report on the development of Co0.5Fe0.5O0.5F1.5 oxyfluoride materials featuring a rutile crystal structure and porous morphology via a scalable and green synthetic route. The catalyst surface, enhanced through electron withdrawing effects imparted by the fluoride ions, give rise to highly effective catalytic sites for electrochemical water oxidation. In particular, their performance across metrics of Tafel slope (27 mV/dec), mass activity (846 A/g at 1.53 V vs. RHE), turnover frequency (21/s at 1.53 V vs. RHE), overpotential (220 mV for 10 mA/cm2), and stability (27 days of continuous operation) largely surpasses most known Co-based catalysts. Mechanistic studies suggest that this performance is driven by a bimolecular, oxygen coupling reaction mechanism through proximal active sites on the catalyst surface, thus enabling a new avenue for achieving accelerated oxygenic electrocatalysis.