Chemical Engineering and Industrial Chemistry

Sustainable polyesters via direct functionalization of lignocellulosic sugars

Authors

Abstract

The development of sustainable plastics from abundant renewable feedstocks has been limited by the complexity and efficiency of their production as well as their lack of competitive material properties. Here, we demonstrate the direct transformation of the hemicellulosic fraction of non-edible biomass into a diester plastic precursor at 83% yield (95% from commercial xylose) during integrated plant fractionation with glyoxylic acid. Melt polycondensation of the resulting xylose-based diester with a range of aliphatic diols led to high-molecular weight amorphous polyesters with combined high glass transition temperatures, tough mechanical properties, and strong gas barriers, which could be processed by injection-molding, thermoforming, and 3D-printing. These polyesters could then be chemically recycled from mixed plastic waste streams or digested under biologically relevant conditions. The transformation’s simplicity led to projected costs that were competitive with fossil alternatives and significantly reduced associated greenhouse gas emissions, especially if glyoxylic acid was sourced from CO2.

Content

Thumbnail image of MainText_Draft Final.pdf

Supplementary material

Thumbnail image of SI_Draft_Final copy.pdf
Supplementary material file
This document is the supplementary material file