Elucidating the Role and Interplay of Nickel and Molybdenum Carbide Particles Supported on Zeolite Y in Methane Steam Reforming

22 October 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


Methane steam reforming (MSR) reaction is a mature industrial process that has been applied for large-scale hydrogen production. Here, we report the synthesis and characterization, reaction kinetics, and deactivation mechanism of a series of catalysts with metallic nickel (Ni) clusters and molybdenum carbide (Mo2C) particles supported on zeolite Y (Ni-Mo2C/FAU) in MSR reaction at 850 oC. Despite low Ni loading less than 2.4 wt%, MSR on Ni-Mo2C/FAU exhibits high activity and stability, yet deactivation of Ni-FAU (the sample without Mo2C) is significant. Further investigations elucidate that the catalyst deactivation is caused by Ni particle sintering via Ostwald ripening instead of coking, and steam induces hydroxylated Ni surface that accelerates sintering. Moreover, encapsulated Mo2C boosts the activity and stability of Ni on zeolite Y by enhancing CH4 activation rather than activating H2O. The interplays among Mo2C and Ni particles dynamically balance the carbon formation and consumption rates, and inhibit Ni sintering. This study enables insights into an alternative design principle of transition metal carbide – Ni catalysts with high activity and stability for effective MSR by tuning the compositional, structural, and interfacial factors.


Methane steam reforming (MSR) reaction
metallic nickel (Ni) clusters
molybdenum carbide (Mo2C)
zeolite Y

Supplementary materials

Supporting Information
TEM and reaction engineering data


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.