Relaxation Time Correlation NMR for Mechanochemical in-situ Reaction Monitoring of Metal-Organic Frameworks

22 October 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We present a new methodology for real-time observation of mechanochemical transformations, based on a magnetic resonance method in which T1-T2* relaxation time correlation maps are used to track the formation of the popular metal-organic framework (MOF) materials Zn-MOF-74 and ZIF-8. This two-dimensional (2D) relaxation correlation measurement is a new method utilizing simple saturation recovery to obtain a T1-T2* spectrum representing different hydrogen environments. The 2D T1-T2* results show a change in signal amplitudes, and their coordinates, within the plots as the reaction progresses, confirming reaction completion. Static solid samples are usually considered difficult to measure because of their short-lived T2* signal and their common non-exponential decay. Using a new processing method, the signal from samples with non-exponential decay was quantified. The importance of key parameters such as the instrument deadtime, the recovery times, and magnetic field strength for the measurement of solids with a short-lived signal is established. This novel magnetic resonance measurement is important since it provides a simple and easy way to analyse an entire solid reaction mixture within its reaction vessel.

Keywords

T1-T2*
nuclear magnetic resonance
relaxation time
saturation recovery
free induction decay
mechanochemistry sinc-gaussian decay
metal-organic frameworks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.