Transition metal migration and O2 formation underpin voltage hysteresis in oxygen-redox disordered rocksalt cathodes

22 October 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Lithium-rich disordered rocksalt cathodes display high capacities arising from redox chemistry on both transition-metal and oxygen ions and are potential candidates for next-generation lithium-ion batteries. The atomic-scale mechanisms governing this O-redox behaviour, however, are not fully understood. In particular, it is not clear to what extent transition metal migration is required for O-redox and what role this may play in explaining voltage hysteresis in these materials. Here, we reveal an O-redox mechanism linking transition metal migration and O2 formation in the disordered rocksalt Li2MnO2F. At high states of charge, O-ions dimerise to form molecular O2 trapped in the bulk structure, leaving vacant O sites surrounding neighbouring Mn ions. This undercoordination drives Mn movement into new fully-coordinated octahedral sites. Mn displacement can occur irreversibly, which results in voltage hysteresis, with a lower voltage upon discharge as observed experimentally. Alternatively, Mn displacement may take place into interstitial octahedral sites, which permits a reversible return of the Mn ion to its original site upon discharge, recovering the original Li2MnO2F structure and resulting in reversible O-redox without voltage loss. These new findings suggest that reversible transition metal ion migration provides a possible design route to retain the high energy density of O-redox disordered rocksalt cathodes on cycling.


energy storage

Supplementary materials

Supplementary Information
Methods, Supplementary Notes, Supplementary Figures


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.