Structural Basis for the Friedel-Crafts Alkylation in Cylindrocyclophane Biosynthesis

18 October 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The Lewis acid-catalyzed Friedel-Crafts alkylation of an aromatic ring with an alkyl halide is extensively used in organic synthesis. However, its biological counterpart was not reported until the elucidation of the cylindrocyclophane biosynthetic pathway in Cylindrospermum licheniforme ATCC 29412 by Balskus and co-workers. CylK is the key enzyme to catalyze the formation of the cylindrocyclophane scaffold through the Friedel-Crafts alkylation reactions with regioselectivity and stereospecificity. Further research demonstrates that CylK can accept other resorcinol rings and secondary alkyl halides as substrates. To date, the crystal structure of CylK has not been disclosed and the catalytic mechanism remains obscure. Herein we report the crystal structures of CylK in its apo form and its complexes with the analogues of its substrate and reaction intermediate. Combining the crystal structures, free energy simulations and the mutagenesis experiments, we proposed a concerted double-activation mechanism, which could explain the regioselectivity and stereospecificity. This work provides a foundation for engineering CylK as a biocatalyst to expand its substrate scope and applications in organic synthesis.

Keywords

cylindrocyclophane
biosynthesis
Friedel-Crafts alkylation
crystal structure
mechanism

Supplementary materials

Title
Description
Actions
Title
CylK structure supporting information
Description
Experimental details, computational details, and supplementary tables and figures
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.