Polymer Science

Tunable and Recyclable Polyesters from CO2 and Butadiene

Authors

Abstract

Carbon dioxide is inexpensive and abundant, and its prevalence as waste makes it attractive as a sustainable chemical feedstock. Although there are examples of copolymerizations of CO2 with high-energy monomers, the direct copolymerization of CO2 with olefins has not been reported. Herein, an alternate route to tunable, recyclable polyesters derived from CO2 and butadiene via an intermediary lactone, 3-ethyl-6-vinyltetrahydro-2H-pyran-2-one, is described. Catalytic ring-opening polymerization of the lactone by 1,5,7-triazabicyclo[4.4.0]dec-5-ene yields polyesters with molar masses up to 13.6 kg/mol and pendent vinyl sidechains that can undergo post-polymerization functionalization. The polymer has a low ceiling temperature of 138 ºC, allowing for facile chemical recycling. These results mark the first example of a well-defined polyester derived solely from CO2 and olefins, expanding access to new feedstocks that were once considered unfeasible.

Content

Thumbnail image of CO2 Polymer Chemrxiv.pdf

Supplementary material

Thumbnail image of Supplementary Information_ChemRxiv.pdf
Supplementary Information
Full Experimental Information