Abstract
Azoarene photoswitches are versatile molecules that interconvert from their E-isomer to their Z-isomer with light. Azobenzene is a prototypical photoswitch but its derivatives can be poorly suited for in vivo applications such as photopharmacology due to undesired photochemical reactions promoted by ultraviolet light and its relatively short half-life (t1/2) of the Z-isomer (2 days). Experimental and computational studies suggest that these properties (λmax of the E isomer and t1/2 of the Z-isomer) are inversely related. We identified isomeric azobisthiophenes and azobisfurans from a high-throughput screening study of 1700 azoarenes as photoswitch candidates with improved λmax and t1/2 values relative to azobenzene. We used density functional theory to predict the activation free energies, reaction free energies, and vertical excitation energies of the E- and Z-isomers of 2,2- and 3,3-substituted azobisthiophenes and azobisfurans. The half-lives depend on whether the heterocycles are 𝜋-conjugated or cross-conjugated with the diazo 𝜋-bond. The 2,2-substituted azoarenes both have t1/2 values on the scale of 1 hour, while the 3,3-analogues have computed half-lives of 40 (thiophene) and 230 (furan) years. The 2,2-substituted heteroazoarenes have significantly higher λmax absorptions than their 3,3-substituted analogs: 76 nm for azofuran and 77 nm for azothiophene.
Supplementary weblinks
Title
Supporting information containing all optimized reactants, IRC calculations, and transition structures
Description
The compressed folder attached contains all of the optimized output files for all structures used in this publication
Actions
View