Analytical Chemistry

A SARS-CoV-2 aptasensor based on electrochemical impedance spectroscopy and low-cost gold electrode substrates.

Authors

Abstract

SARS-CoV-2 diagnostic practices broadly involve either qPCR based nucleic amplification or lateral flow assays (LFAs). qPCR based techniques suffer from the disadvantage of requiring thermal cycling (difficult to implement for low-cost field use) leading to limitation on sample to answer time, the potential to amplify viral RNA sequences after a person is no longer infectious and being reagent intense. LFA performance is restricted by qualitative or semi-quantitative readouts, limits on sensitivity and poor reproducibility. Electrochemical biosensors, and particularly glucose test strips, present an appealing platform for development of biosensing solutions for SARS-CoV-2 as they can be multiplexed and implemented at very low cost at point of use with high sensitivity and quantitative digital readout. This work reports the successful raising of an Opti-mer sequence for the spike protein of SARS-CoV-2 and then development of an impedimetric biosensor which utilises thin film gold sensors on low-cost laminate substrates from home blood glucose monitoring. Clinically relevant detection levels for SARS-CoV-2 are achieved in a simple, label-free measurement format using sample incubation times of 15 minutes. The biosensor developed here is compatible with mass manufacture, is sensitive and low-cost CE marked readout instruments already exist. These findings pave the way to a low cost and mass manufacturable test with the potential to overcome the limitations associated with current technologies.

Content

Thumbnail image of Aptamer paper - Spike Protein - V12 - Final.pdf

Supplementary material

Thumbnail image of SI.pdf
Supplementary Information - A SARS-CoV-2 aptasensor based on electrochemical impedance spectroscopy and low-cost gold electrode substrates
Additional experimental details on the Optimer BioLayer Interferometry data and processing.