Tetraphenylporphyrin Enters the Ring: First Example of a Complex Between Highly Bulky Porphyrins and a Protein

12 October 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Tetraphenylporphyrin (TPP) is a synthetic porphyrin whose properties can be readily modified, endowing it with significant benefits over naturally occurring porphyrins. Yet, their insolubility in water and/or steric bulk have rendered them incompatible with biological systems. Herein, we report the first example of a native biomolecule capturing TPP as well as its derivatives. The haemoprotein HasA, secreted by certain pathogens to scavenge haem from their hosts, can capture various metal- and meso-substituted TPPs. The rapid crystallisation of TPP derivatives captured by HasA revealed the binding mode of TPP at excellent resolutions. A single-site mutation (L85A) of HasA enlarged the binding pocket, allowing the incorporation of a bulkier derivative of TPP. HasA binding TPP derivatives was also demonstrated to inhibit proliferation of the opportunistic pathogen Pseudomonas aeruginosa. This study not only represents a simple method for the complexation of TPP derivatives with a native protein, but also opens the door for the future use of TPP derivatives as biological tools.

Keywords

tetraphenylporphyrin
artificial proteins
protein structures

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supplementary Figures and Tables.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.