Experimental and DFT Studies on Cp*Co(III)-Catalyzed Selective C8-Olefination and Oxyarylation of Quinoline N-Oxides with Terminal Alkynes

12 October 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Herein we report Cp*Co(III)-catalysed site-selective (C8)-H olefination and oxyarylation of quinoline N-oxides with terminal alkynes. The selectivity for C8-olefination and oxyarylation is sterically and electronically controlled. In case of quinoline N-oxides (unsubstituted at C2-position), only olefination product is obtained irrespective of the nature of alkynes. In contrast, majorly oxyarylation is observed when 2-substituted quinoline N-oxides are reacted with bulkier alkynes such as 9-ethynyl phenanthrene. However, alkynes with electron-withdrawing groups provided only olefination products with 2-substituted quinoline N-oxides also. The developed strategy allowed a facile functionalization of naturally derived quinoline N-oxides and terminal alkynes to deliver corresponding olefinated and oxyarylated products. In the developed protocol, the 'N-O’ bond played a dual role i.e., as a traceless directing group and an oxygen atom source (in case of oxyarylation), which is confirmed by 18O-labeling and crossover experiments. In addition, control experiments, deuterium labeling experiments, KIE studies and DFT studies are performed to understand the mechanism and origin of selectivity for different substrates. DFT studies revealed that the alkyne addition into Co-C bond is the rate limiting step. The observed product selectivity is reproduced by DFT methods. Furthermore, the energy decomposition analysis is performed to understand the origin of selec-tivity.

Keywords

[CoCp*(CH3CN)3][SbF6]2
High Valent Cobalt Catalyst
Quinoline
C-H Activation
Remote C-H Activation
Terminal Alkynes
Olefination
Chemoselectivity
Regioselectivity

Supplementary materials

Title
Description
Actions
Title
Cobalt-Catalysis
Description
Optimization Study, Spectral data along with detail of computational study.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.