Theoretical and Computational Chemistry

The Anomalies and Local Structure of Liquid Water from Many-Body Molecular Dynamics Simulations



For the last 50 years, researchers have sought molecular models that can accurately reproduce water’s microscopic structure and thermophysical properties across broad ranges of its complex phase diagram. Herein, molecular dynamics simulations with the many-body MB-pol model are performed to monitor the thermodynamic response functions and local structure of liquid water from the boiling point down to deeply supercooled temperatures at ambient pressure. The isothermal compressibility and isobaric heat capacity show maxima at ~223 K, in excellent agreement with recent experiments, and the liquid density exhibits a minimum at ~208 K. Furthermore, a local tetrahedral arrangement, where each water molecule accepts and donates two hydrogen bonds, is the most probable hydrogen-bonding topology at all temperatures. This work suggests that MB-pol may provide predictive capability for studies of liquid water’s physical properties across broad ranges of thermodynamic states.


Thumbnail image of main_supercooled_mbpol.pdf

Supplementary material

Thumbnail image of si_supercooled_mbpol.pdf
Supporting Information
Materials and methods, and supplementary figures and tables.