Accelerating AutoDock VINA with GPUs

15 October 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

AutoDock VINA is one of the most-used docking tools in the early stage of modern drug discovery. It uses a Monte-Carlo based iterated search method and multithreading parallelism scheme on multicore machines to improve docking accuracy and speed. However, virtual screening from huge compound databases is common for modern drug discovery, which puts forward a great demand for higher docking speed of AutoDock VINA. Therefore, we propose a fast method VINA-GPU, which expands the Monte-Carlo based docking lanes into thousands of ones coupling with a largely reduced number of search steps in each lane. Furthermore, we develop a heterogeneous OpenCL implementation of VINA-GPU that leverages thousands of computational cores of a GPU, and obtains a maximum of 403-fold acceleration on docking runtime when compared with a quad-threaded AutoDock VINA implementation. In addition, a heuristic function was fitted to determine the proper size of search steps in each lane for a convenient usage. The VINA-GPU code can be freely available at https://github.com/DeltaGroupNJUPT/Vina-GPU for academic usage.

Keywords

Molecular Docking
VINA-GPU
OpenCL
GPU

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.