Biocatalytic oxidative cross-coupling reactions for biaryl bond formation

07 October 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Despite their varied purposes, many indispensable molecules in medicine, materials, and asymmetric catalysis share a biaryl core. The necessity of joining arene building blocks to access these valuable compounds has inspired multiple approaches for biaryl bond formation and challenged chemists to develop increasingly concise and robust methods for this task. Oxidative coupling of two C–H bonds offers an efficient strategy for the formation of a biaryl C–C bond, however, fundamental challenges remain in controlling the reactivity and selectivity for uniting a given pair of substrates. Biocatalytic oxidative cross-coupling reactions have the potential to overcome limitations inherent to small molecule- mediated methods by providing a paradigm with catalyst-controlled selectivity. In this article, we disclose a strategy for biocatalytic cross-coupling through oxidative C–C bond formation using cytochrome P450 enzymes. We demonstrate the ability to catalyze cross-coupling reactions on a panel of phenolic substrates using natural P450 catalysts. Moreover, we engineer a P450 to possess the desired reactivity, site- selectivity, and atroposelectivity by transforming a low-yielding, unselective reaction into a highly efficient and selective process. This streamlined method for constructing sterically hindered biaryl bonds provides a programmable platform for assembling molecules with catalyst-controlled reactivity and selectivity.

Keywords

Biocatalysis
cross-coupling
oxidative coupling
protein engineering
cytochrome P450

Supplementary materials

Title
Description
Actions
Title
Biaryl bond formation through biocatalytic oxidative cross-coupling reactions- SI
Description
Supplementary Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.