Medium and Large N-Heterocycle Formation via Allene Hydroamination with a Bimetallic Rh(I) Catalyst


We report the synthesis of a bimetallic Rh(I) complex containing a bridging CO ligand that facilitates Rh–Rh bond formation. This bimetallic complex enables intramolecular allene hydroamination to form seven to ten-member rings in high yield. Monometallic Rh complexes, in contrast, fail to achieve any product formation. We demonstrate a broad substrate scope for formation of a variety of N-heterocycles in good to excellent yields. Macrocyclization reactions that form eleven to fifteen-membered heterocycles are also demonstrated. Mechanistic studies show that the reaction likely proceeds via catalyst protonation by trifluoroacetic acid, followed by reversible allene insertion and C–N bond-forming reductive elimination. The difference in product selectivity observed with our bimetallic catalyst vs monometallic Rh complexes may result from cooperativity between the two metals.

Version notes

Formatting Changes, Authorship corrections