Virtual screening of norbornadiene-based molecular solar thermal energy storage systems using a genetic algorithm

07 October 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


We present a computational methodology for the screening of a chemical space of 10²⁵ substituted norbornadiene molecules for promising kinetically stable molecular solar thermal (MOST) energy storage systems with high energy densities that absorb in the visible part of the solar spectrum. We use semiempirical tight-binding methods to construct a dataset of nearly 34,000 molecules and train graph convolutional networks to predict energy densities, kinetic stability, and absorption spectra and then use the models together with a genetic algorithm to search the chemical space for promising MOST energy storage systems. We identify 15 kinetically stable molecules, five of which have energy densities greater than 0.45 MJ/kg and the main conclusion of this study is that the largest energy density that can be obtained for a single norbornadiene moiety with the substituents considered here, while maintaining a long half-life and absorption in the visible spectrum, is around 0.55 MJ/kg.

Supplementary weblinks


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.