FRET Pumping of Rhodamine-Based Probe in Light-Harvesting Nanoparticles for Highly Sensitive Detection of Cu2+

06 October 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this work we presented novel strategy for increasing the performance of popular fluorescent probes on the basis of rhodamine-lactam platform. This strategy is based on the incorporation of probe molecules into the light-harvesting nanoparticles to pump modulated optical signal by Förster resonant energy transfer. Using the commercially available Cu2+ probe as a reference chemical, we have developed an efficient approach to significantly improve its sensing performance. Within obtained nanoparticles coumarin-30 nanoantenna absorbs excitation light and pumps incorporated sensing molecules providing bright fluorescence to a small number of emitters, while changing the probe-analyte equilibrium from liquid-liquid to solid-liquid significantly increased the apparent association constant, which together provided a ~100-fold decrease in the detection limit. The developed nanoprobe allows highly sensitive detection of Cu2+ ions in aqueous media without organic co-solvents usually required for dissolution of the probe, and demonstrate compatibility with inexpensive fluorometers and the ability to detect low concentrations with the naked eye.

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.