High-entropy intermetallics serve an ultrastable single-atom Pt for propane dehydrogenation

11 October 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Propane dehydrogenation (PDH) has been a promising propylene production process that can compensate for the increasing global demand for propylene. However, Pt-based catalysts with high stability at ≥600°C have barely been reported because the catalysts typically result in short catalyst life owing to side reactions and coke formation. Herein, we report a new class of heterogeneous catalysts using high-entropy intermetallics (HEIs). Pt–Pt ensembles, which cause side reactions, are entirely diluted by the component inert metals in PtGe-type HEI; thereby, unfavorable side reactions are drastically inhibited. The resultant HEI: (PtCoCu)(GeGeSn)/Ca–SiO2 exhibited an outstandingly high catalytic stability, even at 600°C (kd−1 = τ = 4146 h = 173 d), and almost no deactivation of the catalyst was observed two months for the first time.

Keywords

high-entropy
intermetallics
alloy
catalyst
propane dehydrogenation
single-atom

Supplementary materials

Title
Description
Actions
Title
Supplementary Materials
Description
This material shows the details for catalyst preparation, characterization, catalytic performances, comparison with reported studies, and DFT calculations.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.