Ruffling is Essential for Staphylococcus aureus IsdG-catalyzed Degradation of Heme to Staphylobilin

01 October 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Non-canonical heme oxygenases are enzymes that degrade heme to non-biliverdin products within bacterial heme iron acquisition pathways. These enzymes all contain a conserved second-sphere Trp residue that is essential for enzymatic turnover. Previous studies have revealed several important roles for the conserved second-sphere Trp in Staphylococcus aureus IsdG, S. aureus IsdI, and Mycobacterium tuberculosis MhuD. However, a general model for the geometric, electronic, and functional role of the second-sphere Trp had not been deduced prior to this work. Here, UV/Vis absorption (Abs) and circular dichroism (CD) spectroscopies were employed to show that the W67F variant of IsdG perturbs the heme substrate conformation without altering the protein secondary structure. In general, it can now be stated that a dynamic equilibrium between “planar” and “ruffled” substrate conformations exists within non-canonical heme oxygenases, and that the second-sphere Trp favors population of the “ruffled” substrate conformation. 1H nuclear magnetic resonance and magnetic CD spectroscopies were used to characterize the electronic structures of IsdG and IsdI variants with different substrate conformational distributions. These data revealed that the “ruffled” substrate conformation promotes partial porphyrin-to-iron electron transfer, which makes the meso carbons of the porphyrin ring susceptible to radical attack. Finally, UV/Vis Abs spectroscopy was utilized to quantify the enzymatic rates, and electrospray ionization mass spectrometry was used to identify the product distributions, for variants of IsdG with altered substrate conformational distributions. In general, the rate of heme oxygenation by non-canonical heme oxygenases depends upon the population of the “ruffled” substrate conformation. Also, the production of staphylobilin or mycobilin by these enzymes is correlated with the population of the “ruffled” substrate conformation, since variants that favor population of the “planar” substrate conformation yield significant amounts of biliverdin. These data can be understood within the framework of a concerted rearrangement mechanism for the monooxygenation of heme to meso-hydroxyheme by non-canonical heme oxygenases. However, the mechanisms of IsdG/IsdI and MhuD must diverge following this intermediate in order to generate distinct staphylobilin and mycobilin products, respectively.

Keywords

Heme Oxygenase
IsdG
IsdI
MhuD
MCD
NMR
ESI-MS
Enzyme kinetics

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Mutagenic primers, DNA sequencing data, FPLC trace, SDS-PAGE gels, and UV CD analysis.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.