Abstract
The design of bioinspired synthetic inorganic molecular complexes is challenging, due to a lack of understanding of enzyme action and the degree to which that action can be translated into mimics. Exemplary of this challenge is the reversible conversion of formate into CO2 by formate dehydrogenase (FDH) enzymes with Mo/W centers in large molybdopterin cofactors. Despite numerous efforts to synthesize Mo/W-containing molecular complexes, none have been demonstrated to reproduce the full reactivity of FDH. Here, we carry out a large-scale, high-throughput screening study on all mononuclear Mo/W complexes currently deposited in Cambridge Structural Database (CSD). Using density functional theory, we systematically investigate the individual effects of metal identity, ligand identity, oxidation state, and coordination number on structural, electronic and catalytic properties. We compare our results on molecular complexes with quantum mechanics/molecular mechanics simulations on a representative FDH enzyme to further elucidate the influence of the enzyme environment. These comparisons reveal that the enzyme environment primarily influences the metal-local geometry, and these metal-local structural variations can improve catalysis. Through a series of computational mutations on molecular complexes, we extend beyond the CSD structures to further identify the limits of varied chalcogen and metal identity. This broad set and comparison reveal relatively little variation of electronic properties of the metal center due to the presence of the enzyme environment or changes in metal-distant ligand chemistry. Instead, these properties are found to be much more sensitive to the identity of the metal and the nature of the bound terminal chalcogen.
Supplementary materials
Title
Supporting Information document
Description
Document containing all supporting information: text, figures, and tables.
Actions
Title
Supporting Information ZIP
Description
ZIP file containing optimized structures and the prmtop and inpcrd files for the FDH enzyme study.
Actions