Understanding the Role of Geometric and Electronic Structure in Bioinspired Catalyst Design: the Case of Formate Dehydrogenase

30 September 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The design of bioinspired synthetic inorganic molecular complexes is challenging, due to a lack of understanding of enzyme action and the degree to which that action can be translated into mimics. Exemplary of this challenge is the reversible conversion of formate into CO2 by formate dehydrogenase (FDH) enzymes with Mo/W centers in large molybdopterin cofactors. Despite numerous efforts to synthesize Mo/W-containing molecular complexes, none have been demonstrated to reproduce the full reactivity of FDH. Here, we carry out a large-scale, high-throughput screening study on all mononuclear Mo/W complexes currently deposited in Cambridge Structural Database (CSD). Using density functional theory, we systematically investigate the individual effects of metal identity, ligand identity, oxidation state, and coordination number on structural, electronic and catalytic properties. We compare our results on molecular complexes with quantum mechanics/molecular mechanics simulations on a representative FDH enzyme to further elucidate the influence of the enzyme environment. These comparisons reveal that the enzyme environment primarily influences the metal-local geometry, and these metal-local structural variations can improve catalysis. Through a series of computational mutations on molecular complexes, we extend beyond the CSD structures to further identify the limits of varied chalcogen and metal identity. This broad set and comparison reveal relatively little variation of electronic properties of the metal center due to the presence of the enzyme environment or changes in metal-distant ligand chemistry. Instead, these properties are found to be much more sensitive to the identity of the metal and the nature of the bound terminal chalcogen.

Keywords

formate dehydrogenase
CO2 chemistry
molybdenum
tungsten
high-throughput screening
catalyst design
bioinspired catalysts

Supplementary materials

Title
Description
Actions
Title
Supporting Information document
Description
Document containing all supporting information: text, figures, and tables.
Actions
Title
Supporting Information ZIP
Description
ZIP file containing optimized structures and the prmtop and inpcrd files for the FDH enzyme study.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.