An Efficient Synthesis of Tetrodotoxin

30 September 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Tetrodotoxin (TTX) is an indispensable probe in neuroscience, a biosynthetic and ecological enigma, and one of the most celebrated targets of synthetic chemistry. Here, we present a stereoselective synthesis of TTX that proceeds in 22 steps starting from a readily available glucose derivative. The central cyclohexane ring of TTX and its α-tertiary amine moiety was established via the intramolecular 1,3-dipolar cycloaddition of a nitrile oxide, followed by alkynyl addition to the resultant isoxazoline. After some carefully chosen protecting group manipulations, a ruthenium-catalyzed hydroxylactonization set the stage for the formation of its dioxa-adamantane core. Installation of the guanidine, oxidation of a primary alcohol, and late-stage epimerization of the resultant aldehyde gave a mixture of TTX and anhydro TTX. Our synthesis represents one of the most effective of TTX reported to date and could give ready access to biologically active derivatives.


3-dipolar cycloadditions
transition metal catalysis

Supplementary materials

Supplementary Information
Synthetic procedures, physical characterization data, X-rays analyses, and spectra.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.