Abstract
Abstract: Experimental and theoretical 13C kinetic isotope effects are utilized to obtain atomistic insight into the catalytic mechanism of the Pd(PPh3)4 catalyzed Suzuki-Miyaura reaction of aryl halides and aryl boronic acids. Under catalytic conditions, we establish that oxidative addition of aryl bromides occurs to a 12-electron monoligated palladium complex (Pd(PPh3)). For aryl iodides, the first irreversible step in the catalytic cycle precedes oxidative addition and is shown to be binding of the iodoarene to Pd(PPh3). Our results suggest that the commonly proposed oxidative addition to the 14-electron Pd(PPh3)2 complex can occur only in the presence of excess added ligand or under stoichiometric conditions. The transmetalation step, under catalytic conditions, is shown to proceed via a tetracoordinate boronate (8B4) intermediate with a Pd-O-B linkage.
Supplementary materials
Title
The catalytic mechanism of the Suzuki-Miyaura reaction
Description
Experimental details, NMR parameters, calculated structures and energies.
Actions