Abstract
Thermally activated delayed fluorescence (TADF) materials are commonly used in various apparatus, including organic light emitting device (OLED)-based displays, as they remarkably improve the internal quantum efficiencies (IQE). Alt-hough there is a wide range of donor-acceptor based compounds possessing TADF properties, in this computational study we investigated TADF and some non-TADF chromophores, containing benzophenone or its structural derivatives as the acceptor core, together with various donor moieties. Following the computational modeling of the emitters, several excited state properties, such as the absorption spectra, singlet-triplet energy gaps (∆EST), natural transition orbitals (NTO) and the topological ΦS indices, have been computed. Along with the donor-acceptor torsion angles and spin-orbit coupling (SOC) values, these descriptors have been utilized to investigate potential TADF efficiency. Our study has shown that on the one hand, our photophysical/structural descriptors and computational methodologies predict the experi-mental results quite well, on the other hand, our extensive benchmark can be useful to pinpoint the most promising func-tionals and descriptors for the study of benzophenone based TADF emitters.