Materials Chemistry

Directing both the Morphology and Packing of Chiral Metal-Organic Frameworks by Cation Exchange Mediated by Nanochannels

Authors

Abstract

Crystals are among the most challenging materials to design, both at the molecular and macroscopic levels. We show here that metal-organic frameworks, based on tetrahedral pyridyl ligands, can be used as a morpho-logical and structural mold to form a series of other isostructural crystals having different metal ions. The cati-on exchange is versatile, based on the use of diverse first-row metals; it occurs with retention of the morpholo-gy. Different morphologies were obtained by a direct reaction between the ligand and metal salts. An iterative crystal-to-crystal conversion has also been demonstrated by two consecutive cation exchange processes. The primary manganese-based crystals have a complex connectivity characterized by a rare space group (P622). The molecular structure generates two types of homochiral channels that span longitudinally the entire hex-agonal prism. These channels mediate the cation exchange, as indicated by energy-dispersive X-ray spectros-copy combined with scanning electron microscopy measurements on microtome-sectioned crystals. The occur-rence of the observed cation exchange is in excellent agreement with the Irving-Williams series (Mn < Fe < Co < Ni < Cu > Zn) that are associated with the relative stability of the resulting coordination nodes. The overall approach allows for the predictability of the structural properties of rare metal-organic frameworks based on tetrahedral pyridyl ligands at different hierarchies: from elemental composition, molecular packing, and mor-phology to the bulk properties.

Content

Thumbnail image of Hadar1-V17.pdf

Supplementary material

Thumbnail image of Hadar1-V17-SI.pdf
Supporting Information
Descriptions of the methods, elemental analysis of the bulk samples, single crystal X-ray data and structure refinement parameters, additional SEM and optical images, powder X-ray diffraction spectra and fits, X-ray Photoelectron spectra.