Compacting the density matrix in quantum dynamics: Singular value decomposition of the surprisal and the dominant constraints for anharmonic systems

27 September 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We introduce a practical method for compacting the time evolution of the quantum state of a closed physical system. The density matrix is specified as a function of a few time-independent observables where their coefficients are time-dependent. The key mathematical step is the vectorization of the surprisal, the logarithm of the density matrix, at each time point of interest. The time span used depends on the required spectral resolution. The entire course of the system evolution is represented as a matrix where each column is the vectorized surprisal at the given time point. Using singular value decomposition, SVD, of this matrix we generate realistic approximations for the time-independent observables and their respective time dependent coefficients. This allows a simplification of the algebraic procedure for determining the dominant constraints (the time-independent observables) in the sense of the maximal entropy approach. A nonstationary coherent initial state of a Morse oscillator is used to introduce the approach. We derive analytical exact expression for the surprisal as a function of time and this offers a benchmark for comparison with the accurate but approximate SVD results. We discuss two examples of a Morse potential of different anharmonicities, the H2 and I2 molecules. We further demonstrate the approach for a two coupled electronic states problem, the well studied non radiative decay of pyrazine from its bright state. Five constraints are found to be enough to capture the ultrafast electronic population exchange and to recover the dynamics of the wave packet in both electronic states.

Keywords

coherence
surprisal analysis
non-adiabatic dynamics
algebraic approach
computing by observables

Supplementary materials

Title
Description
Actions
Title
Supplemental Material
Description
Technical details and derivations
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.