Carbon-Negative Cement Manufacturing from Seawater-Derived Magnesium Feedstocks

27 September 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

This study describes and demonstrates a carbon-negative process for manufacturing cement from widely abundant seawater-derived magnesium (Mg) feedstocks. In contrast to conventional Portland cement, which starts with carbon-containing limestone as the source material, the proposed process uses membrane-free electrolyzers to facilitate the conversion of carbon-free magnesium ions (Mg2+) in seawater into magnesium hydroxide (Mg(OH)2) precursors for the production of Mg-based cement. After a low-temperature carbonation curing step converts Mg(OH)2 into magnesium carbonates through reaction with carbon dioxide (CO2), the resulting Mg-based binders can exhibit compressive strength comparable to that achieved by Portland cement after curing for only two days. Although the proposed “cement-from-seawater” process requires similar energy use per ton of cement as existing processes, its potential to achieve a carbon-negative footprint makes it highly attractive to decarbonize one of the most carbon intensive industries.

Keywords

cement
carbon-negative
electrolysis
seawater
decarbonization
magnesium

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Information that includes additional experimental results and details about calculations used in the main article.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.